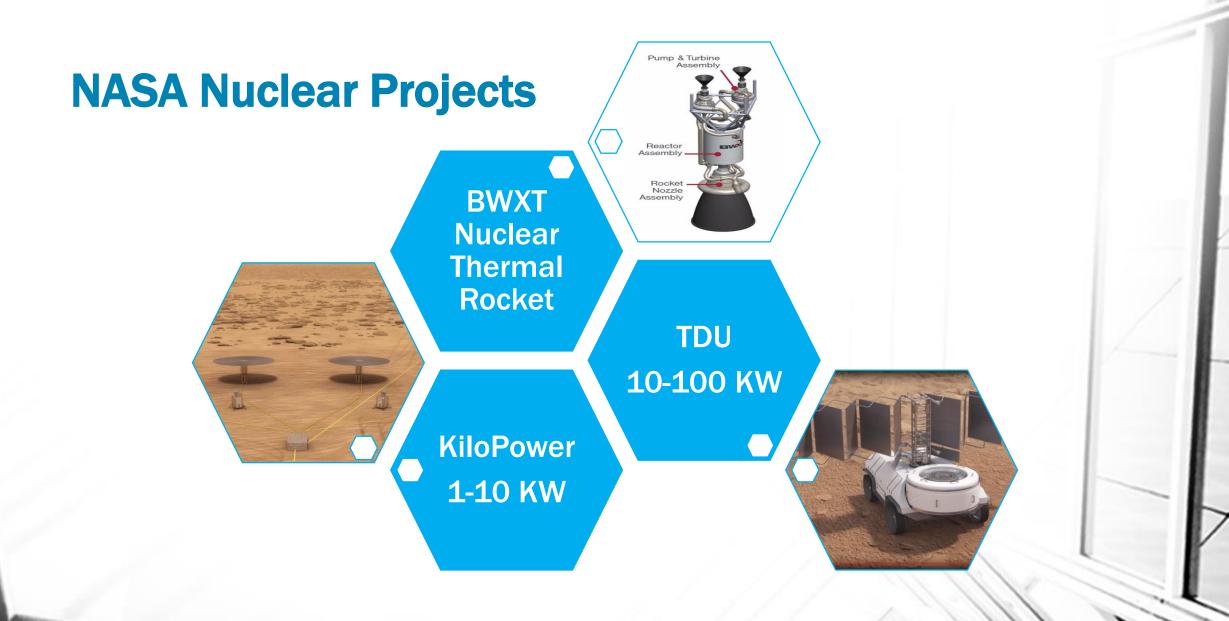
Near Term Space Settlement: Risk Reduction Missions

Kent Nebergall Macroinvent.com

Mars Society Conference, 2017

© 2017 Kent Nebergall All rights reserved.


The Grand Challenges of Space Settlement (2014)

Launch/LEO	Deep Space	Moon/Mars	Settlement
Affordable Launch	Solar Flares	Moon Landing	Air/Water
Large Vehicle Launch	GCR: Cell Damage	Mars EDL	Fuel
Mass Fraction beyond Earth Orbit (Refueling)	Medication/ Food Expiration	Spacesuit Lifespan	Power
Space Junk	Life Support Closed Loop	Reliable Ascent Vehicle	Food
Microgravity (health issues)	Medical Entropy	Reliable Return Vehicle in Orbit	Assembly
	Psychology	Flight to Earth	Mining
	Mechanical Entropy	Earth Reentry	Manufacture
			1112
Funded Projects	NASA Focus	Commercial Focus	Gaps

All rights reserved.

Preparing for the NewSpace Revolution

Year	Energy	Information	Invention	Affordability
2017				Falcon 9 Block 5
2018	Falcon Heavy			Crewed Dragon
2019			Blockchain Matures	Crewed Starliner
2020	New Glenn	Low Latency Global Internet Satellites	LEO Internet Bigelow BA330	50 MT satellites have two
2021		AI Capabilities	Quantum Computing?	launch platforms, both cheap and rapid
2022	NASA Space Nuclear Power Nuclear propulsion		ISS Replacement Groundwork	turnaround

© 2017 Kent Nebergall All rights reserved.

Driving Critical Mass for the NewSpace Revolution

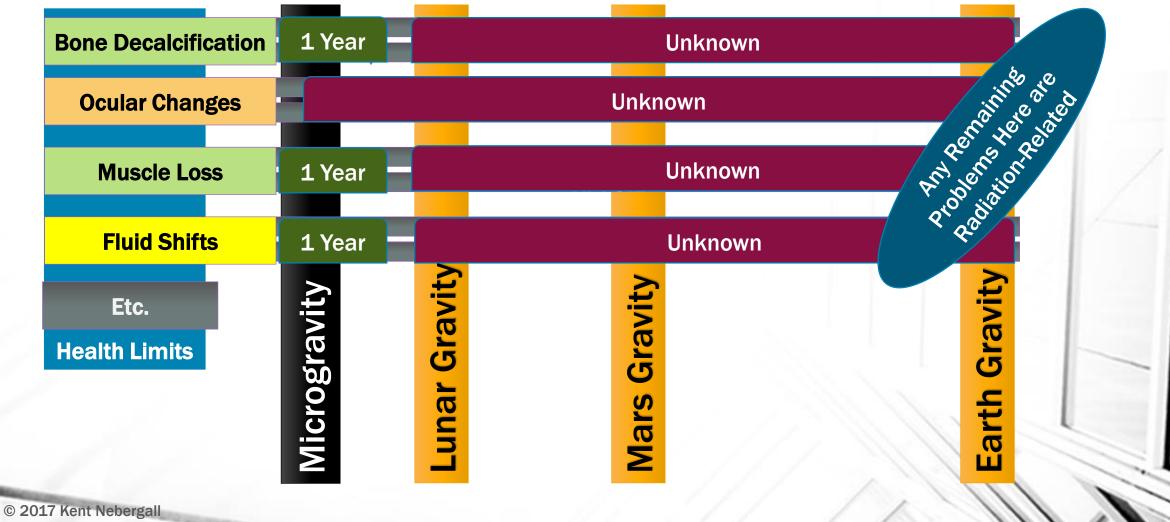
- Deep Space Risk Reduction Missions
- Organizing for Direct Solutions

Deep Space DragonLab 1

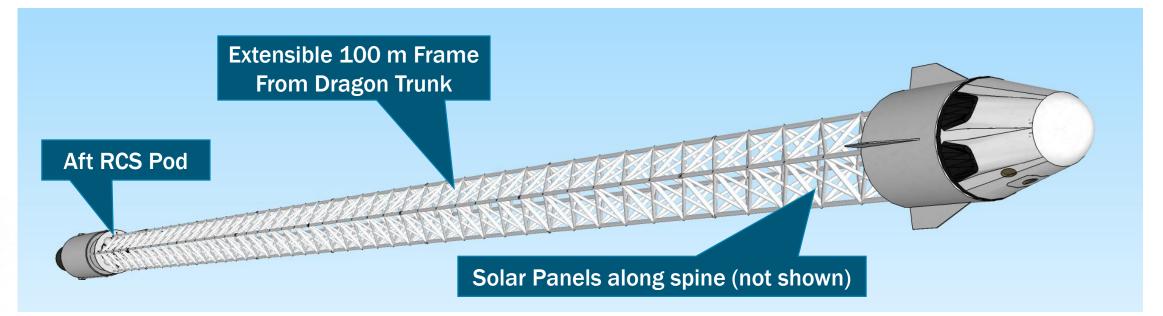
- Exposure test items that are altered when exposed to deep space to test the risk
- Launch into high (lunar distance apogee) orbit to expose to unfiltered cosmic rays and solar flares
- After mission simulating full trip to/on/from Mars, return the cargo and examine results.
- Very small Delta-V needed to drop back into atmosphere from elliptical orbit.
- BONUS: Simulate Mars Return impact on heat shield

© 2017 Kent Nebergall All rights reserved.

This Photo by Unknown Author is licensed under CC BY-NC-SA


Lab Experiments

- Food with nutrients that degrade in radiation exposure, and full spectrum for use on mission
- Medication and vitamins known to loose efficacy, and those critical to mission
- Common pathogens that mutate harmfully in microgravity
- Seeds that would be grown for food on Mars
- Gut Bacteria and other microbiome life that
 may mutate or be impacted


This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

4 Bases: Full Spectrum Problem Characterization

All rights reserved.

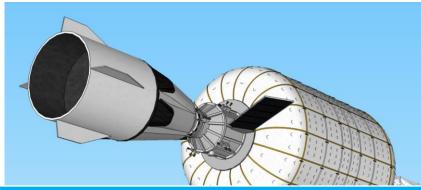
Deep Space DragonLab 2 (Spinning)

- Launch DragonLab and Second Stage into Same Orbit
- Made In Space Truss between the second stage and DragonLab to Spin (nominally 100 meters)
 - Corner cables for tension, truss for compression, with active stabilization by adjusting tension on cables.
- Include a Life Sciences Lab (multigenerational mouse-lab or equivalent)

© 2017 Kent Nebergall All rights reserved.

Deep Space Spinning DragonLab 2 ("GameraLab")

STATESTER AND A REAL AND A

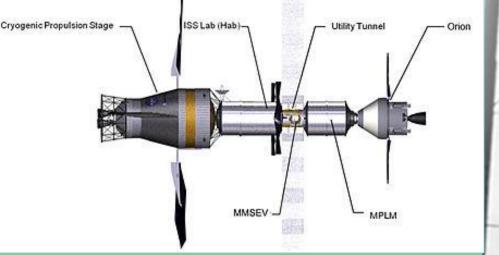

Variations	RPM	M/Sec	Purpose
Moon	1.8	8.34	 Simulate lunar occupation Fast sample return (hours, not 3 days) from conditions to earth lab.
Mars	2.83	13.19	 Mars travel and settlement simulation If able to handle conditions, may reduce the stress/need for fast/long tethers on crewed missions
Earth	4.5	20.85	 Control for conditions that are impacted by both radiation and reduced gravity Fourth data point in the series to show trend lines

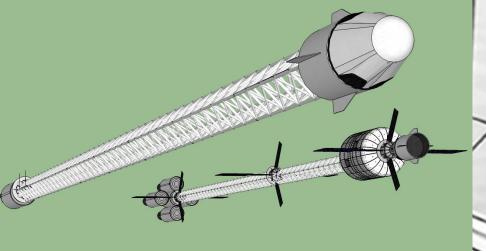
GameraLab Crewed

aunch	Payload	
FH-1	 Propellant Dock at Aft End Framework and Solar Array RCS (Aft) First Stage2 Module 	
FH-2	BA-330Second Stage2 Module	
F9-D	Crew for Outfitting LabThird Stage 2 Module	
FH-x	 Propellant Load/Add Stage2's 	
F9-D	Crew for departure/Spin-up	

© 2017 Kent Nebergall All rights reserved.

Engineering Testbed




Needed for	Test Here
Space-X ITS, ULA ACES	LOX Cooling systemPropellant Transfer
Bigelow; Space-X	Deep space integrity testLife support test
Made In Space, NASA Langley	Frame structures built in orbit
ULA/Bigelow Cislunar 1000	 Early stages and testbed for surface equipment
Uses	 Microgravity Station Lunar Gravity Simulator Mars Gravity Simulator Earth Gravity Simulator Earth Departure Vehicle, Cycler
And and a second se	

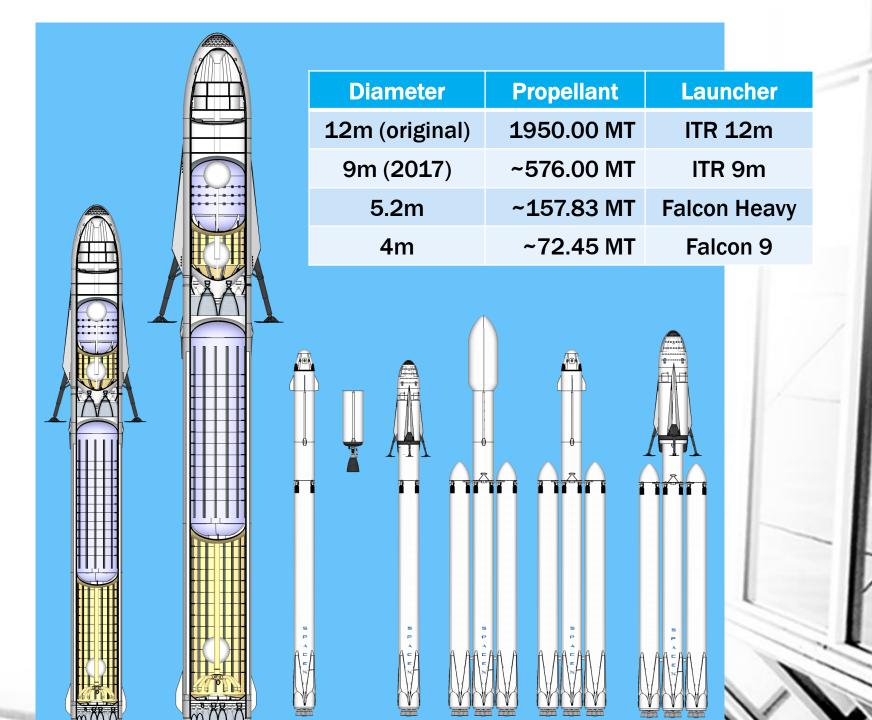
Comparison with Deep Space Gateway

Criteria	DSG	DL1	GL1	GL-2
Deep Space	Yes	Yes	Yes	Yes
Microgravity	Yes	Yes	Yes	Yes
Artificial Gravity			Yes	Yes
Sample Return Time	4 Days	Hours	Hours	Hours
Volume (Cubic M)	139	10	10	330
Crewed	139			330
Mission Cost (USD, M)	8,000*	265	555	1,300
Revisit Cost	1,000			265

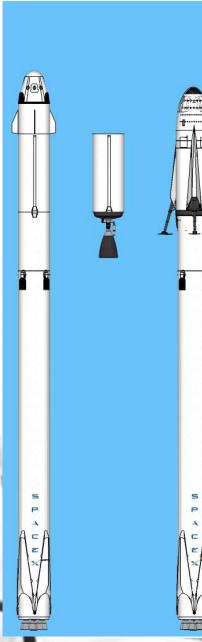
- Does not include the \$7.7 billion already spent on SLS or the \$11.1 billion already spent on Orion
- We could build DL1, GL1, and four GL-2 (Earth, Mars, Lunar, and Microgravity) and still have \$2 billion left over for Experiments, Propellant, Servicing, etc.



© 2017 Kent Nebergall All rights reserved.


Shrinking ITS

How low can it go and still work?



Shrinking the SpaceX Interplanetary Transport Spacecraft

Cutting the ITS Diameter 25 percent decreases the Propellant and Crew Compartment Volume by 70 percent

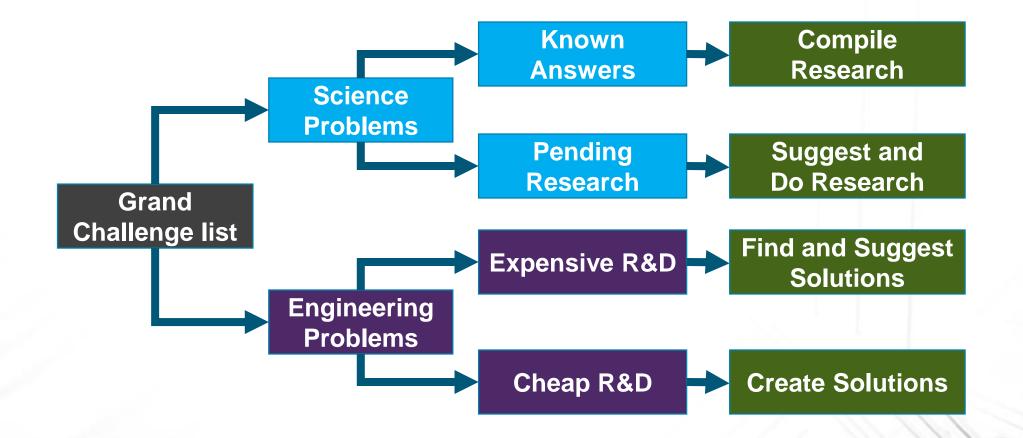
© 2017 Kent Nebergall

Shrinking the ITS

5.2 M (FH)

~157.83 MT Propellant

4 M (F9)


~72.45 MT Propellant

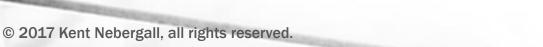
- Fully-Reusable Dragon/Stage 2
- Can reach ISS, barely
- Can weigh 500 kg more without design change, or considerably more with larger tanks.
- Refueling on orbit only allows reaching GEO.
- No exploration benefit unless fuel tanks expanded.

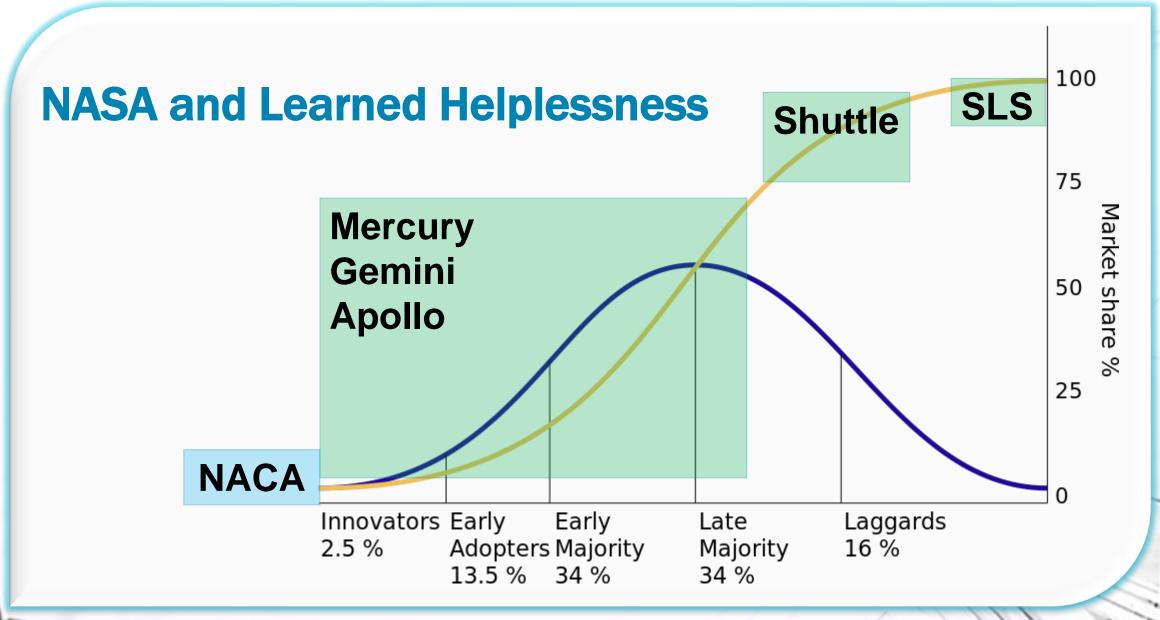
- Can reach orbit with 30,400 kg dry mass + cargo/crew
- If dry mass 13.5 MT or less, can reach Mars if refueled in orbit
- Can transfer payloads to GEO and return to LEO

- Landing legs would need to be extended to allow for longer engine, or engine bell shortened and made less efficient.
- Would allow flight tests on Earth (and with larger version, Mars) of biconic atmospheric entry with propulsive landing.

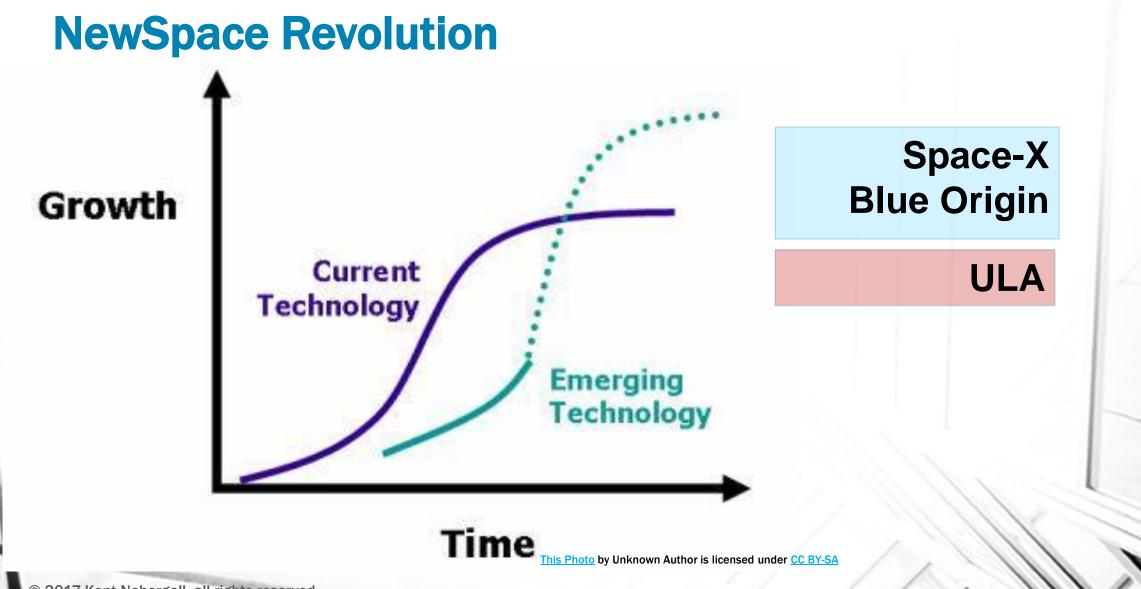
Grand Challenge Breakdown

© 2017 Kent Nebergall, all rights reserved.

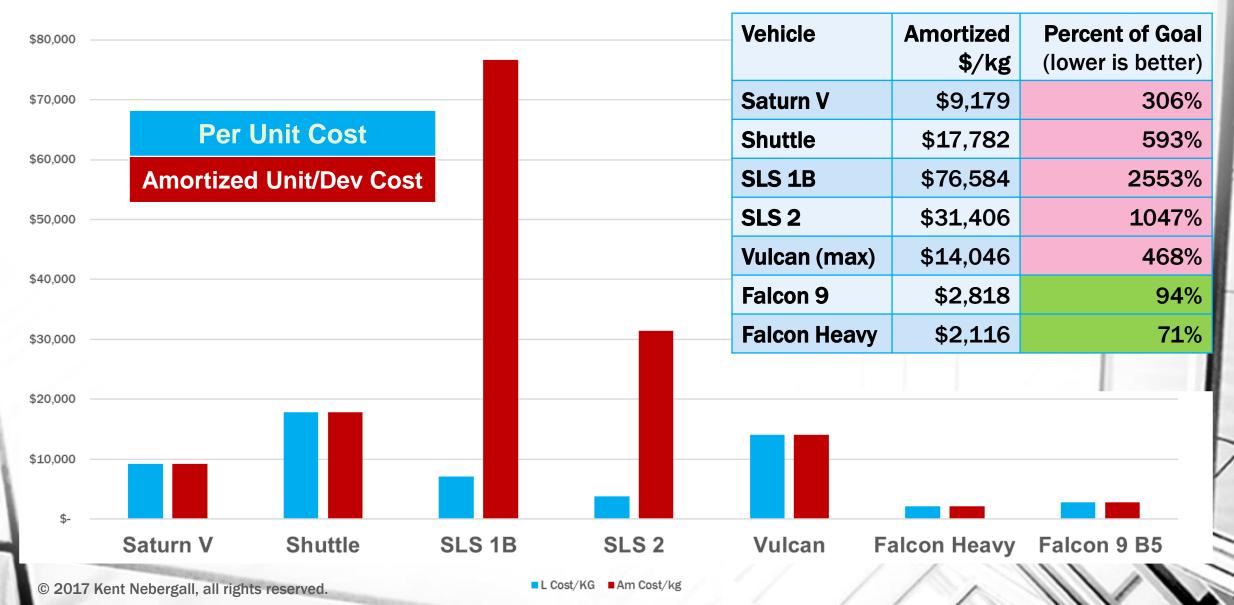

Questions?


Kent Nebergall

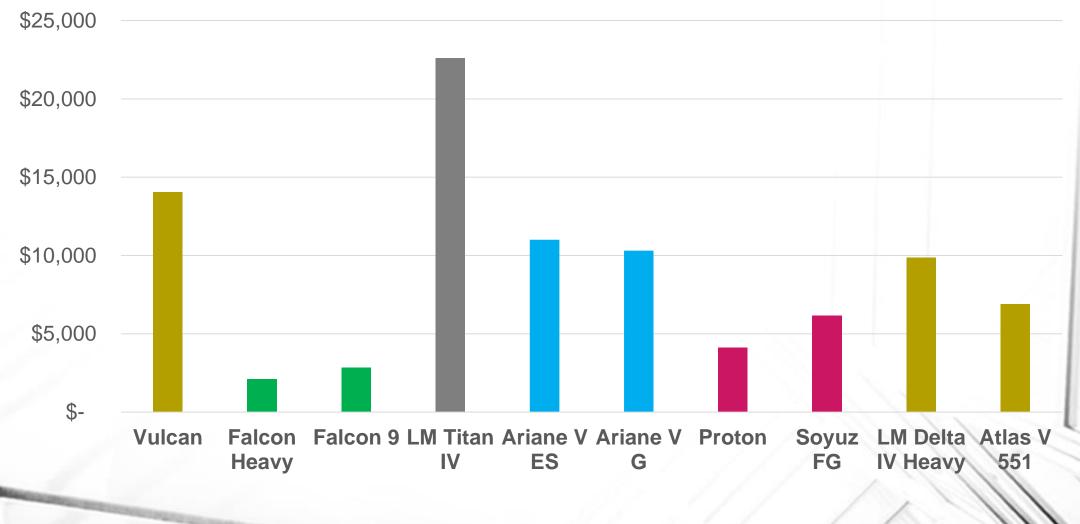
- Macroinvent.com
 - https://www.facebook.com/MacroInvent


MacroInvent

Kent@MacroInvent.com



This Photo by Unknown Author is licensed under OCBY-SA



© 2017 Kent Nebergall, all rights reserved.

1.1: Launch Cost per Kilogram

Commercial USD/KG (Maximum Payload)

1.2: Launch Capacity/Decade

0 Space Settlement		Vehicle	MT/Decade	
0		Saturn V	2360	
0		Shuttle	1100	
0		SLS	350/650	
0 Lunar Outpost		Falcon 9 b5	4400	
0		Falcon Heavy	1276	
0				
	Spa	ace Station		
0				
0				
Saturn V Shuttle	SLS 1B	SLS 2 Vulca	an Falcon Heavy	Falcon 9
	MT	MT/Decade		111

© 2017 Kent Nebergall

NewSpace Phase Challenges and Thresholds

Grand Challenge	Crewed LEO (ISS)	Exploration	Anchor Settlement
Heavy, Cheap Launch	6,000 USD/kg 20 MT/LEO 1000 MT/Decade	3,000 USD/kg 60 MT/LEO 3000 MT/Decade	1,000 USD/kg 200 MT/LEO 5000 MT/Decade
Orbital Refueling	2 MT (Progress)	50 MT	400 MT
Microgravity/Health	6 Months, Microgravity	1 Year, Microgravity 20% Gravity Spin Tether	1 Year, Microgravity 40% Gravity Spin Tether
Radiation	Basic Flare Protection Basic Shelter Available	30 cm Water Equiv. 1 M Flare Shelter	TBD 50 cm Water Equiv.
Life Support	42 % Oxygen 75 % Water	80 % Oxygen 80 % Water	99 % Both, or 95 % plus ISRU
Supply Lifespan	6 Months, 2 MT	3 Years, 10 MT, 4 crew	4 Years, 50 MT, 12 crew Local Basic Food Growth

Exploration Phase Challenges and Thresholds

Grand Challenge	Crewed LEO	Exploration	Anchor Settlement
Mechanical Entropy	30% Crew FTE	10% Crew FTE	1% Crew FTE
Spacesuits	LEO EVA	Lunar EVA, 3-90 Days	Mars EVA, 500 Days
Lunar Surface Operations	N/A	3-9 Person 3-90 Days	12-60 Person, 1-2 Year Rotations
Mars Surface Operations	N/A	4-8 Person, 500 Days	12-60 Person, 3-10 Years
ISRU Fuel/Air/Water	N/A	Prop: 332 MT Water: 9 MT Oxygen: 7 MT	Prop: 2000 MT Water: 55 MT Oxygen: 42 MT
Earth Return	500 kg, 3 Crew, LEO Entry	500 kg, 3-6 Crew, Deep Space Entry, 180 Day Return Flight	12-50 People, Deep Space Entry, 180 Day Return Flight

Where Cronyism Comes From

Government (Source)	Crony/Political Actors	Object Response
Needs a new technical capacity for a goal	Receives massive investment to develop that technology	Public celebrates and is inspired by the new innovation.
Needs increased capacity in same range	Receives continued funding to push technical envelope	Rival governments build similar systems using similar methods.
Programs become self- driving constituencies	In 2-4 iterations, structure grows large enough to "create it's own weather"	System becomes a goal, not a means to a goal.
Public begins to notice the system is overpriced	Products end up overpriced to support the bloat (cost plus), not the mission.	Competitors realize they can make better systems for less money.
Vested political interests continue funding overpriced systems	Political actors use clout to lobby for regulation to cut out competition, arguing that it will "lower costs".	Corporate competitors cut costs and scale systems for efficiency, and move B list payload.

Killing the Feedback, Boosting the Volume

Government Role	Action	Restriction
Primary Research	Expand the definition of Feasible	Do not spend more than ~10 percent total
Needs a new technical capacity	 Invest in new technology that is in the proper affordable/feasible zone. Just beyond commercially self- funded Just within fully-doable driven by primary research 	 Projects must have Beginning, middle, and end Measurable results Enable next wave technologies Fixed price contracts or competitive "fly off" contracts to winners
Commercialize the last wave	 Use to expand information, trade, science, education. Offer lab space to new competitors 	 Demonstrate GAAP measurable value from previous wave Tax revenue from commercialization of previous wave.
Seed for Next Wave	 Invest in engineering education, basic research prior to wave. Repeat the loop. 	 Restrict spending to match revenue. As more waves come in, more investment possible.