Marrs Sample Return New Ideas, First Principles Torny Muscatelle (Mar Soc. Boering Criter Chair, Macrolivent Com) (Marr Soc. Stering Criter Chair, Macrolivent Com) Marr Society Conference, August 2024, Seattin, Marrie	Hi everyone.
<section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header>	Hidden slide- reference only.
 Introduction Traditional Efforts History of MSR Comparison Why is this so hard? Recent Designs Starship has entered the chat Our design SpaceX updates 	Let's begin with Mars Sample return design history, why it's been so hard so far, and our current concepts. Finally, I'll show Tony and I's concept for a Starship-based MSR mission.

Image credit: MdSt	NASA started working on Mars Sample Return concepts in 1969. This was part of a human Venus- Mars Flyby mission design by Warner Von Braun. That's the medium-sized capsule with the yellow arrow in this image. After that, NASA discussed minimalist concepts with a tiny solid rocket and a very basic sample retrieval arm.
Lockheed Martin for NASA (zubrin, 1995) S337 Million USD (2024) S2.13 Mg Cost per gam 250 g Mass: 560 kg IDrect Earth Ruturn ISQU Methanol LOX	Here is one of Robert Zubrin's first Mars Sample Return designs with Lockheed Martin from 1995. This is from a 100-page analysis he did back then. This design is so old that the entry capsule on the left is Russian, and the rover is a Sojourner clone. Note that I'm putting a data comparison dashboard on the bottom of these slides with inflation- adjusted amounts, but many of those are estimated toward the end based on budgets for previous missions.
Project Rigel (Nebergall, 2008, MarsDrive)	In 2008, I won a competition to design a Sample Return mission that needed to use In situ propellant production. I took a lot of inspiration from Zubrin's designs and current NASA projects to save engineering overhead. I used a Curiosity type aeroshell around a Viking-like lander with a Spirit type sample rover.

Red Dragon 3 MSR (Jacks cucles, cuti-ru) Weight of the strategy of the strate	In the 2010's, three different NASA studies examined if a SpaceX Dragon capsule could land on Mars. The last of these efforts was a sample return concept. Tony was one of the NASA authors at the time. Note the launch tube in the core of the capsule. I'm going to borrow this later.
Why so clifficute? The "Sour Sout" of Engineering Mage Credit : M55	Which brings us to the current day. Over fifty years from the start So why hasn't NASA done it yet? Regarding sample return, I used to say if we can't return a kilogram, we can't return a crew. But as it turns out, it's extremely difficult to return just a kilogram. When it comes to scaling, it's a sour spot of engineering. It's like cooking one French fry.
Engineering Problems Needs to be the size of a grapefruit • Yet handle extreme temperature/pressure	First, small rockets need small parts. If you make propellant on Mars, it's almost impossible to build a traditional cryogenic rocket pump the size of a grapefruit. The pressures, temperature differences, and tolerances would make it unreliable even if you could build one. Like running a watch on jet fuel, with half the watch cryogenically frozen. The metal needs to be thick enough to handle the pressures involved.

Engineering Problems Engine Pump Design Needs to be the size of a grapefruit 'et handle extreme temperature/pressure Image: Comparison of the size of a grapefruit Mars entry capates are wide and flat Rockets want to be tail and thin for stability Image: Comparison of the size of a grapefruit Image: Comparison of the size of a grape fruit Image: Co	Second, Mars probes have very flat landing capsules like flying saucers due to the thin atmosphere. This allows the lander to slow down enough to open the parachutes prior to hitting the ground. Ascent rockets for the samples, on the other hand, want to be long and skinny for stability reasons. Too short, and the rocket wants to tumble. So, you land a stable rocket horizontally, but raise it vertically. This adds complexity to the launcher. Or you launch a chonky rocket with a very agile guidance system to keep it from tumbling.
Engineering Problems Engine Pump Design Needs to be the size of a grapefruit Yet handle extreme temperature/pressure Capsule/Rocket Geometry Mars entry capsules are wide and flat Rockets want to be tail and thin for stability Propellant Propellant Auking fuel requires heavy hardware	Third, the ascent vehicle needs so MUCH propellant that sending all the fuel from earth dramatically limits your sample payload. But it also needs so LITTLE propellant that setting up a solar array and In Situ Propellant Production plant weighs almost as much as the fuel. If you build redundancy into the prototype fuel production plant, you get into engineering complexity which adds to cost and mass.
Current Proposals Mars Sample Return in 2024	Ironically, the fact that it SEEMS like it should be easy just makes it worse. Designers who start with systems that barely work on paper hit a wall late in the design process. They either make a breakthrough or cancel the project.

NASA Reference Mission 10 Billion USD (est.) 55.0 M/g 2000 g 2024 Solid Rocket (450 kg) 300 g	This is NASA's current design. It costs \$10 billion and wouldn't return samples until 2045 – a situation that even NASA's administrator couldn't accept. I guess nineteen more years is a bit much. Seventy- six years is a long time for NASA to plan "the next step". This is less xenobiology and more Zeno's paradox. So, NASA asked for proposals this past Summer to simplify it. They recently chose seven contractors and three NASA centers to make suggestions. We'll know by the end of the year which concepts from the ten proposals will be cherry picked so they can go on to the next stage.
Skycrane / MSR (Zubrin) Article Published In Shear Messe (lay 6, 202) B Billion USD (est. S Billion USD (est. S Dillion USD (est.	Recently, Robert Zubrin wrote an editorial that suggested using a sky crane to land a sample return vehicle. He proposed both storable and in situ propellant production versions. I'm estimating \$5 billion based on the missions this is based on, but it's a fifth the cost per gram as the NASA baseline. This picture is actually an older NASA concept that also used Sky crane.
Project MAV-REC (Nebergall)	I also wondered if NASA couldn't kit-bash a vehicle from off the shelf parts and came up with this. I revived Red Dragon a fourth time but build an ascent rocket based on Electron's second stage. Its fuel pumps are electric, so we avoid the miniaturization problem. We can just barely make an ascent vehicle with enough propellant to match the NASA design, if you make your oxygen using solar power on the surface. Or you can use NASA's solid rocket but without the split-second air launch. It would fit the core tube just fine.

Mars Ascent Vehicle Comparison Image: Comparison Component Mass (kg) Mars Orbit Except to Earth Total Propellant Mass 628 1999 666 1997 Liquid Oxygen 283 1218 381 1218 RP-1 245 781 235 781 Foit-Burn Mass 275 131 235 Post-Burn Mass 125 250 150 250 Sample/Capsule Mass 125 625 -37 88	The Electron uses RP-1 for fuel, so you only have to make the oxygen. Here is a table comparing the designs, propellant needs, and sample return masses to both Mars orbit and direct flight to Earth. My baby Electron version can get 125 kg capsule to orbit but can't get back to Earth. If you could get a full-sized Electron second stage to Mars, it would be able to launch 625 kg to orbit or 88 kg to Earth proximity, assuming a 250-kg vehicle carrying it.
Starship Has Entered the Chat	When NASA awarded the seven Mars Sample Return study contracts, one is for SpaceX and Starship. So we can get past all these scaling issues that have dogged us for over half a century. The difference between everything we've seen so far and Starship is literally the difference between a Maxi Van and a Boeing 747. The cargo volume of Starship is 1000 cubic meters, which is the same as a 747 or the entire International Space Station.
Fast Return Capsule Landing = -14.50F Image: Comparison of the provide o	We can send two full-sized, fully fueled Electrons on a single Starship. That green circle is the Electron second stage to scale with Starship V2. By the time this is sent to Mars, the Tesla Optimus humanoid robot will be in production. So send a couple robots to gather all the sample tubes and replenish the rover with new sample tubes before sending it on its way. That ascent rocket can be sent to orbit to meet the European orbiter from the ESA/NASA design if that's politically required. Or, it can bring the samples all the way back to a near- earth trailing orbit to allow either the ESA or SpaceX to collect them there for planetary protection. In that case, we get the samples to Earth in the very next launch window.

Slow Return Capsule	Meanwhile on Mars, the Starship is just getting started. It can send ATVs with Optimus robots to do additional research or a full CyberTruck if appropriate. If the truck bed carried a deployable solar array, this expedition crew of humanoid robots would gather samples across hundreds of kilometers for the next 480 days. As noted, each Electron can deliver 88 kg to Earth or 625 kg to Mars orbit. For comparison, all the Apollo missions combined gathered 382 kilograms of lunar samples across six landings. So, we can do roughly three Apollo missions worth of sample return direct to Earth or Earth proximity.
Starship MSR (Muscatello/Nebergall) 1. Wo Electron Stage 2 of Starbip iong with soler of cytruct ATV2 1. In the first return to Earth bam band of the soler starbip ioner net S00 dgs samples over ne	The full Electron second stage fits in a corner of one deck of the Starship payload bay. That box next to it is a picture of the Tesla Optimus humanoid robot. So the "crew" could be forty Optimus robots, with an average of twelve active on a given day. A CyberTruck and two ATVs could handle long range transport. We would set up a solar plant to charge the bots and equipment. We can use leftover oxygen from the landing tanks and make more on site to handle losses en route for the Electrons. We also want to make simple landing pads for the next Starship test flights.
Hrs/Sol KWh/Sol Array (M2) Mass (kg) 8 Optimus Robots 12 100 156 1719 ISRU Plant 24 48 74 815 Cybertruck 8 180 274 3028 2 Artys 6 115.2 173 1908 Starship (base) 24 720 1071 11,785 Total 1163.2 1691 18,598 -42 x 42 -42 x 42 meters 18.6 MT	The power demands are sliced by hours per day when each system is active. For that, we get a solar array of under 19 tonnes, or almost half our payload. This array covers an area of 42 by 42 meters, because of course it does. Power demand for the Starship is assumed to be 30 percent that of the ISS, separate from the robots and vehicles. The solar array big enough to road trip CyberTruck with four androids would fit mass-wise in the truck bed. Assuming two days of charging and exploring per one day of driving, you have unlimited range.

Mass (kg) Quantity Support ratio Total Mass Optimus Robots 57 40 2 4960 Electron / Fuel 1000 2 2 4000 Cybertruck 3050 1 2 6100 Salar Panels 1600 1 1 18,600 ISRU Plant 1000 2 1.1 2200 Landing Pads 1000 2 1.1 2200	So with this wish-list of cargo we still have less than half the cargo weight capacity of Starship. And practically all if it will be commodity hardware by then, easily replicable.
Parameter Startink V2 Mini Startink V2 ERO Mass (kg) 740 1250 7000 Solar Panel (m ³) 105 144 Wingspan (m) 30 38 Comms/Earth Return Orbiters	While sending 400 kg to Mars orbit is tempting, the problem is getting it back from there. The current design uses a European vehicle that is a bit larger than Starlink V2 but MUCH heavier. There's a lot of room for trade studies here between sample size, transfer orbit types, and ease of return. That said, we could send a LOT of Starlink satellites into Mars Orbit from a second Starship. Starlink satellites can not only provide global high-speed communications and laser links with Earth. They can also carry small telescopes to see car sized objects on Mars and remap the planet EVERY DAY at that resolution.
Original Proposal Alternative Benefits Rutherford Engline Engline (Methalox) Long life fuel storage Oxygen only ISRU Make Methalox yinth Could alto bett water sing of other Options Optimus Robots Other Options Could offer "ride share" testing of other mobility systems.	So with unlimited possibilities, what other options are there? We could do an all SpaceX design by repurposing one of the Lunar Starship descent engines in place of the Rocket Lab Rutherford engine. I'm not sure of the capacity for this engine because it's not released yet, but I would be methane and oxygen, so a valid Mars Direct prototype for propellant production. If finding water or ice is a problem, just bring it from earth as ballast and use it for radiation shielding experiments before converting it to rocket fuel. Use leftover landing propellant to send the two-week early return capsule back first. Conversely, if we want to rent space to other robot manufacturers, we could see a SPOT type robot, NASA drones, and so on also exploring the crater.

Landing Site	With something as big as Starship, we need to review the landing site. The Jezero crater was studied extensively prior to Perseverance as a landing site. Perseverance itself has studied it in greater detail than any other site on Mars. So the volcanic floor unit should have a good spot for Starship landing. I fact, it would be the most validated place on Mars for such a landing.
Both Escapade HSA- Dual Rocket Lab magnetosphere probes on HSA- Dual Rocket Lab magnetosphere probes on August Laught - Industry Sectors (1999) 205 MMX -Japan - mission to sample return Probos (1999) 205 MMX -Japan - mission to sample return Probos (1999) 205 Rosaland ESA rown (1999) 205 Rosaland ESA rown (1999) 205 Japan - mission to sample return 200 hor 205 Rosaland ESA rown (1999) Ecologist not. 2030 Tanwen-3 China - Mars Sample Return 2030 Other Near-Term Missions Other Near-Term Missions 2010	For context, these are all the Mars missions planned over the next six years. Without sample return, the US is barely doing anything. Most are coming out of Japan, China, Europe, and India. China also has a sample return mission planned for 2030, which involves a lander and an orbiter. It's unclear how much they would bring back or from where, but it appears to be a simple one like the lunar sample returns.
Thank you! Questions? Fert's Mars Design portfolio below. Image: Comparison of the second sec	Thank you.

27th Annual International Mars Society Convention University of Washington - Seattle, WA August 8-11, 2024 Mars Sample Return Using SpaceX Starship-ISRU Demonstration Tony Muscatello, Ph.D. Member of Mars Society Reard of Directors Steering Committee Member Mars Technology Instlute Advisor Former Mission Support Director NSA KSC Return Aurora CO	
Disclaimer Albough I used to work for NASA at the formody Space Contror, this prevention is only my own personal opinion and should not be interpreted preventiative of NASA policy. Tory Muscatello	
<section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header>	

Mission Requirements	 ▲ Launch at leastkg of Mars Sample Tubes into Mars Orbit ▲ Rendezvous with sample return vehicle ← Transfer samples for return to earth ✔ OR launch samples directly to earth if feasible 	
Starship	Lander Approach	
 Assume Electron 1 configured to laum Mars orbit Estimate propellar (Kent) Select an existing proposed by Zubri Tesla android robe Compare mass, pr LOX and kerosene synthesizing LOX Evaluate any issue Starship payload I deployment and la 	2 nd Stage (E-2) can be ch from the surface of Mars to ht requirements for E-2 to orbit rover (Spirit-class, as inj to fetch samples or use state to gather samples ber and volume for carrying on Mars (TM) es of landing with E-2 in say and remote control unch of E-2 (TM)	
Calculations	 The Elactron users guide states: "The 1.2 m dismeter second stage has approximately 2,000 kg of propellant on board." In the RP-1 webpage, Wikipedia says "Oxidizer-to-fuel ratio 2,56" Massi(02) + Mass(RP-1) = 2000 kg Mass(02) + Z56 Mass(RP-1) = 562 Mass(02) = 1438 kg; Mass(RP-1) = 562 kg 	

Starship Lander Approach: Summary of ISRU Options No. Starship Lander Approach: Summary of Isrue and the starship of the stars	
Image: Construction design browset mass and volume	
Figure & L vack of BA MONIE #8 Electron Propellant Mass Requirements and Propellant Mass Requirements and Sample Return-Scale MONIE	

Electron Propellant Mass Producements and Acronautics MVGS Verger Electrolysis Produce (2001) NASA KSC by Pioneer Astronautics- Mass and Volume Not Available	
 Electron Propellant Mass Requirements and Production (Cont.) Environmentation (Cont.) Five of these units would be able to meet the 3.22 kg 02/d requirement power, Founded up to -4000 V/d ue to loss of heat from Sabatier catalyst 	
Protos and Draving Afronaetic	

First for bring high grad bring high gr	
Options Not Included Image: A constraint of the following slides partially describe Oxfon gene production systems Image: A constraint of the following slides for much larger SOXE oxygen production systems Image: A constraint ox or constraint on the following slides for much larger SOXE oxygen production systems Image: A constraint oxygen production systems Image: A constraint oxygen production systems Image: A constraint oxygen production oxygen production systems Image: A constraint oxygen production oxygen pro	
 Hollist, Elwell, Hafen, Pile, Hartvigsen, and Electron Propellant Mass Requirements and Production- Atternate Technology: Oxfoon Full- Soft Version of MOXIE (33x) United Version of MOXIE (33x) Hollist, Elwell, Hafen, Pile, Hartvigsen, and Elegeneration of the control of the control of the Production of the control of the c	

<image/>	
 Hallits, Ewell, Halen, Nile, Hortspace, and Bargerson co-autors (2027). Bargerson co-autors (2027).	
 Hillst. Therit, Judie, Mar, Hartington, and Elargona counters (202). Begindrig models calls (1), a (1), a (1), a (2), a (2),	

